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Problems of structural isomerism in chemistry have received much attention.

But only occasional inrcads have been made toward a systematic solution of

the underlying graph theoretical problems of structural isomerism. Solutions
in the past have been partial, with acyclic and cyclic structures being

n3

treated independently Recently the "boundaries, scope and limits of

the subject of structural isomerism of acyclic molecules have been defined
by the DENDRAL algorithm3 . This algorithm permits an enumeration and

representation of all possible acyclic molecular structures with a given

empirical formula.

Acyclic molecules represent only a subset of molecular structures, however,
and it may be ar ,ued that cyclic structures (including those possessing
acyclic chains) are of more general interest and importance to modern
chemistry from both a practical and theoretical standpoint. An approach to
cyclic structure generation has appeared in a previous paper in this seriesh c

That approach, which operates on a set of previously generated acyclic forms

by labelling hydrogen atoms pairwise and connecting the atoms to which they
are attached with a new bond, has one serious drawback. The approach cannot
nake efficient use of the symmetry properties of cyclic graphs; hence an

inordinate amount of computer time must be

(3) J. Lederberg, G.L. Sutherland, B.G. Buchanan, E.A. Feigenbaum,
A.V. Robertson, A.M. Duffield, and C. Djerassi, J. Amer. Chem. Soc., 2&,
2973 (1969).

(Y Y.M. Sheikh, A. Buchs, A.B. Delfino, G. Schroll, A.M. Duffield,
C. Djerassi, B.G. Buchanan, u.L. Sutherland, E.A. Feigenbaum, and ¥
J. Lederberg, Org. Mass Spectrom.,‘k, 493 (1970).




spent in retrospective checking of each candidate structure with
existing structures to remove duplicates. For this reason, an
alternative approach to construction of cyclic molecules has been
developed. This approach is designed to take advantage of the
underlying graph theoretic considerations, primarily symme try, to
arrive at a method for more efficient cbnstruction of a complete and
irredundant list of isomers for a given empirical formula. Central
to the successful solution of this problem is the generation of all
positional isomers obtaine¢ by substitutions on a given ring system.
This topic has rece.ved attention for nearly 188 years, wWith limited
succ‘ess5 . Its nore general ramifications go far beyond organic
chemistry. OCOraph theoreticians have ccrsidered various aspects of
this topic, frequently, but not necessarily, in the context of
organic molecules. Polya has presented a theorem which permits
calculation of the number of structural isomers for a given ring

Hill fa,b

has applied this theorem to enumeration of

Tc 8

system,

isomers of simple ring compounds and Hill and Taylor have

(5) See, for exampie, A.C. Lunn and J.K. Senior, J. Phys. Chenm.,
33, 1827 (1929) and references cited therein.

(6} al G. Polya, Compt. rend., 2081, 1167 (1935);
b} G. Polya, Helv. Chim. Acta, 18, 22 (1936);
c) G, Polya, Z. Kryst. 92, 415 (1936);
) G. Polya, Acta fath., 68, 145 (1337},

(7} a) T.L. Hill, J. Phys. Chem., 47, 253 (1943);
b)) | Tl B TR @ AR
¢) T.L. Hill, J. Crem. Phys., 11, 294 (1943),

(&) W.J. Taylor J. Crem. Phys., 11, 532 (1343).
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pointed out that Polya's theorem permits enumeration of geometrical and
optical isomers in addition to structural isomers. More recently, formulae
for enumeration of isomers of monocyclic aromatic compounds based on graph

Qa

theory, permutation groups and Polya's theorem have been presented This

history of interest and results provides only marginal benefit to the organic
chemist. Although the number of isomers may be interesting, these methodss_9a
do not display the structure of each isomer. Also, these methods do not
provide information on the more general case where the ring system is

embedded in a more complex structure. Even for simple cases thz task of

specifying each structure by hand, without duplication, is an onerous one.

Balaban has published a series of papers9 addressed, in part, to the problem
nf specification of isomeric structures. Although his method, which differs
substantially from our own, involves significant manual effort and does not

apvear to encompass a mechanism for prospective avoidance of duplicate

9b,9¢c

structures, his compilations of isomers of annulenes , represent an

important contribution as extensions to the compilations of LederberglO .

METHOD
OVERVIEW

Framework. The framework for this method is that chemical structures consist

of some combination of acyclic chains and rings or ring systemsm’ll 3 e

problem of construction of acyclic isomers

9a) A.T. Balaban and F. Harary, Rev. Roum. Chim., 12, 1511 (1967); b) ibid.,
11, 1097 (1966); Erratum, ibid., 12, No. 1, 103 (196T); c) ibid., 17, 865
(1972); &) ibid., 18, 635 (1973), and additional references cited therein.

10) J. Lederberg, DENDRAL-64, Part I. Notational Algorithm for Tree Structures,
NASA Star No. N65-13158, NASA CR-57029; Part II. Topology of Cyclic Graphs, NASA
Star No. N66-140T4, NASA CR-68898; Part III. Complete Chemical Graphs: Embedding
Rings in Trees, NASA Star No. NT71-76061, NASA CR-1231T76.

11) It is assured that structures are completely conrected by chemical bonds
thus catenates and threaded structures are viewed as consisting of separate molecules.
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{and radicals) has been solved previously . 1f all possible ring

systems can be constructed from all or part of the atoms in the
empirical formula, and all possible acyclic parte are available from
the acyclic generator, the combination of ring systems with acyclic
parts in all unique ways Wwould yield the complete list of isomers.
The method for construction of ring systems is described belouw. This
description employs some terms which require definition. The
definitions also serve to illustrate the taxonomic principles which
underiie the operation of the structure generator. The
generator's view of molecular structure differs in some respects from
the chemist's. A chemist, for example, may view etructures
possessing the same functional group or ring as related. The
generator works at the more ‘undamental level of the vertex-graph"%

as described below.

Chemical Graph. A molecular st;ucture may be viewed 3s a graph,
termed the chemical graph, or skeleton. A chemical graph consists
of nodes, with associated atom names, and edges, which correspond

to chemical bonds. Consider as an example the substituted piperazine,
1, uhose chemical graph is illustrated in Chart | as 2 Note
that hydrogen atoms are ignored by convention, while the symbol "U*
is used to specify the unsaturation. The degree (primary, secondary,

...) of a node in the chemical graph has its usual meaning, i.e., the




number of (non-hydrogen) edges connected to it. The valence of each
atom determines its maximum degree in the graph. As wusally dieplayed
by chemists in planar representation, the chemica! graph describes
the connectivity rather than the geometric configuraticn of a

molecular structure.

Superatom. In general, 38 chemical graph can be separated into |

WA A —

cyclic and acyclic parts. Each cyclic structural sub-unit may be
2

deemed a superatom possessing any number of free valences s

The chemical graph 2 arises from a combination of two carbon atoms

y

with ring-superatom 3. Ring-superatonm 3 possesses the indicated

free valences to which the remadining hydrogen and two rRethyl radicals

will be attacked (Crart 1),
L 4

Ciliated Skeleton . A ciliated skeleton ig a skeleton with free

WVAAAANAAANAAAANA A A~ 5

valences but without atom names. Ring-superatom 3 arises from the
4

ciliated skeleton 4 by associating the atom names of eight carbon and two

nitrogen atoms with the skeleton (Chart 1).
' . . .

Cyclic Skeleton. A chemical graph whose nodes are not associated

AAAAT e AAAANAAN st

with atom names and which contains no acyclic parts and no free p
B R o o

12) A free valence is a bond with an unspecified terminus. Any substructura, ]

cyclic or not, may be treated as a superatom; however, the term, in this l

paper, is generally restricted to cyclic (termed ring-) superatoms.
) 5




valences is termed a cyc/ic skeloton. Ciliated skeleton ﬁ arises

from one way of associating eixteen free valences with the nodes on

the cyclic skeleton 2 (Chart [).

Ver tex-Graph. Vertex-graphs'o are cyclic skeletons from which
nodes of degree less than three have been deleted. The vertex-graph
of the cyclic skeletané is the regular trivalent graph " of two
nodes, 5 Note that the remdining nodes of the cyclic skeleton“S‘_
are of degree two. Removal of these secondary nodes from iuhile
retaining the interconnectione of the two tertiary nodes yields &

(Chart 1).

As an illustration of the variety of structures which may be
constructed from a given vertex-graph and empirical formula, for

example, C H N, consider that graph ﬁ is the vertex-graph for
186 23 2 : 5

all bicyclic ring systems (excluding spiro forms). Cyclic skeletons
Zand 8 (Chart 1), for example, may be constructed from eight
secondary nodes and E There are many ways of associating sixteen
free valences uwith each cyclic skeleton, resulting in a larger number
of ciliated skeletons. For example, _El and \13 ariee from
different allocations of sixteen free valences to 2 (Crart 1),

There is only one wWay to associate eight carbon atoms and two

nitrogen atoms With each ciliated skeleton to yield superatoms (e.g.




Chart [

Conventional Representatian:
Composition = CiotooN2

Chemical Graph:

Composition = CvoNz Uz

Superatoms

Ring - superatem Composition = C.NZU2

Acyciic Superatam Carnposi'liana Cz

Ciliated Skeleton:

Cyclic Skeieton:

Vertex Graph




i} and 12, Chart 1). However, several structures are obtained by
associating the remaining two carbon atoms (in this example) with each
superatorm. as an ethyl or two methyl groups. Chemical graphs i? and i&,
for example, arise from two alternative ways of associating two methyl

groups with superatomlé.

Multiple Bonds. For the purposes of this program we adopt the formalism

that all multiple bonds (double, triple, ...) are considered to be small
rings by the program. Previous versions> (acyclic generator) differ from
this program in that double and triple bonds are regarded as specially

labelled edges.

AIMS

The structure generator must produce a complete list of structures without
durlication. By duplicate structures we mean structures which ere
equivaient in come well-defined sense. The class of isomers generated by
the program includes only connectivity isomers. Transformations (utilized
to determine equivalence) allowed under connectivity symmetry preserve the
valence and bond distribution of every atom. Connectivity symmetry does

not consider bond lengths or bond angles. This choice of syrmetry results
in construction of a set of tornlogically unique isomers. A more detailed
discussion of equivalence is discussed in Appendix A and in the accompanying

paper13 ; a discussion of isomerism and symmetry is presented in Appendix B.

13) L. Masinter, N.S. Sridharan, J. Amer. Chem. Soc., 00, 0000 (1973).




STRATEGY

The strategy behind the cyclic structure generator is strongly tied to the

framework described above. The strategy is summarized in greatly simplified

form in Figure 1. The vertex-graphs from which structures are constructed can

be specified for a given problem by a series of calculations. Thus Part A of

the program (Figure 1) partitions the pot of atoms in all possible ways; each

partition consists of those atoms assigned to one or more "superatompots” and

a "remaining pot." Each superatompot is a collection of atoms from which all

possible, unique ring-superatoms * can be constructed based on the

appropriate vertex-graphs (Fart B, Fig. 1). Each ring=-superatom will be a ring

system in completed structures. The atoms in the remaining pot will form

acyclic parts of the final structures when combined in all possible, unique ways

with the ring=superatoms from the corresponding initial partition (Part C, Fig. 1).
DESCRIPTION
We are faced with the difficulty of describing a complex computer
program in the traditional mode of presentation in 3 scientific
journal. The narrative form is not the ideal medium for this
description; simple examples do not aluays indicate all essential
acpects of a program. A deeper understanding of a program could be

eng2ndered through the use of 3 large number of well chosen examples,

but the length of such a presentation would be excessive and would

tax the patience of even the most interested reader.

9
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We are thus aware of the insufficiency of considering only one example in the
following written description. We have adopted the strategy of presenting
essential aspects of the procedure for structure generation in the main

body of the text. Details of the description which might obscure the
principal concepts are placed in Appendices C and D. Mathematical

14, 15

details are available elsewhere. We hope this serves the purpose of
providing the casual reader with a deeper understanding of the method

withsut having to contend with details which, on the other hand, are

important to others who wish to make use of our approach.

The example chosen to illustrate each step of the method is CéH or C,U, as

8( 673

there are three degrees of unsaturation).

This example does not contain bivalent or trivalent atoms (e.g., oxygen and
nitrogen, rsoectively) or atoms of ve:lence greater than four, nor any

univalent atoms other than hydrogen (e.g., chlorine, fluorine).

Partitioning and Labelling. The mechanism for structure generation

involves a series of "partitioning” steps followed by a series of

(14)(:) H. Brown, L. Masinter and L. Hielmelend, Discrete Mathematics, in
press;

(b) Stanford Computer Science Memo STAN-CS-72-0318.

(]5) (@) H. Brown and L. Masinter, Discrere Mathematics, submitted;
(b) Stanford Computer Science Memo STAN-CS-73-0361.

10




"labelling" steps. Partitions are made of items which must be
assigned to oujects (usually graph structures or parte thereof) ac
the molecular structures are built up from the vertex-graphs. The

' process by which items are assigned to the graphs is termed Iabelling{a’m

Examination of Chart | reveals the different types of items
invoived. For example, nodes are partitioned among and labelled upon
the edges of the vertex-graphs to yield the cyclic skeletons. Free
valences are partitioned among and labelled upon the nodes of cyclic

skeletons to yield ciliated skeletons, and so forth.

Partitioning steps in the subsequent discussion are carried out
assuming that objects among which items are partitioned are ingist-
inguishable. Distinguishability of objects (edges, nodes, ...) is
specified during labelling and will be discusssd in a subsequent
section. tThe partitioning steps performed by the program. are

outlined in Table I. Each step is described in more detail! below.

Sl




Table 1. Partitioning Steps Performed by the Structure Generator
Step # Partition Among
1 Atoms and Unsaturations Superatompots and
in Empirical Formula Remaining Pot
2 Free Valence Atoms in Superatompot
8 Secondary Nodes Loops / Non-loops
4 Non-loop Secondary Edges of Graph
Nodes
J Loop Secondary Nodes Loops
6 Ring-superatoms and Efferent Links
Remcining Pot (see Appendix D)

——— ————— o . - - - G S S e — G — G D D S G - -

MBI A. Sypecratom Pgr;itions.

Ring-superatoms are “two-connected” structures, i.e., the ring-
superatom cannot be split into two parts by scission of a single
bond. The atoms in an empirical formula may be distributed among
from one to several such 'tuo-connected ring-superatoms. A
distribution which allots atoms to two or more superatompots will
yield (respectively)l structures containing two or more ring-

16
superatoms linked together by singie bonds (or acyclic chains) 3

16} Chemists are more familiar with terms such as rings or ring
systuems. The term tuo-connected is used here in conjunction with
ring-superatoms for a more precise dJeucription. For example,
biphenyl may be viewed as a single ring system or two rings depending
on the chemical context. In this work, however, biphenyl consists of
two ring-superatoms {two phenyl rings) linked by a single bond.

12




? In the generation process, one must find all possible ways of partitioning the
given formula into superatompots and a remaining pot, such that molecules can
be constructed. The considerations in forming superatom partitions deal
primarily with valence and unsaturation. This procedure is summarized in
Appendix C, Superatom Partitions. The partitions which result are summarized

in Table 1.

Tavie Il. Alloued Partitions of C U Into Superatompots and Remaining

63
Pot.
Partition Number of Superatompot Number Remaining
Nunmber Superatompots 1 2 3 Pot
1 i Cu - - -
E 3
2 1 Cu - - C
53 1
3 1 Cu - - C
4
5
6
7
8
9
19




PART B. Ring-superatom Construction.

VAAA A

Each partition (Table 11) must nou be treated in turn. The couplete
set of ring-superatoms for each superatompot in a given partition
musi be constructed. The major steps in the procedure are out!ined

in Figure 2.

Valence List. The first step in part B is to strip the superatompot of

atom names, while retaining the valence of each atom. The numbers of each
type of atrm are saved for later lak 2lling of the ciliated skeletons (Chart I).
A valence list may then be specified, giving in order the number of bi=, tri-,
tetra~ and n-valent nodes which will be incorporated in the superatom. Thus
the superatompot C U., is transformed into the valence list O bivalents, 0

63
trivalents, 6 tetravalents (0, 0, 6), and C4U2 becomes (0, 0, 4) (Figure 2).

Calculation of Free Valence. From the valence list and the associated

unsaturation count the number of free valences of each superatompot is
determined uniquely. (see Calculation of Free Valence, Appendix C). For
C6U3 the free valence is eight (Fig. 2). The free va'ence of o superatom
represents the number of bonding sites which can connect to hydrogen

atums, other superatoms or atoms in the remaining pet.

Partitioning of Free Valence. The free valences are then partitioned
NAAAAAAAAAA A -
among the nodes in the valence list in all possible, unique ways. (see

Appendix C, Partitioning of Free Valence).

14




Ocgree List., Each partition of free valences alters the affective
A NAS AN N

valence of the nodes in the original valence list Wwith respect to the
ring-superatom, In the example, assignment of one or twoc free
valences to a tetravalent node transforms this node into a tri- or
bivalent node respectively. As the ring-superatom is constructed,
those tetravalent nodes which have been assigned, say, two free
valences, have then only two valences remaining for attachment to the
ring-superatom. These nodes are then of degre;7 two and may be
termed secondary nodes, Thus the partition of free valences
2,2,2,2,0,00n six tetravalent nodes yields the degree list (4,0,2)
(Fig. 2) as four uf the tetravalent nodes receiva tuo free valences
each,yielding four nodes of degree tuo (secondary) and leaving two
nodes of degree four (quaternary). The program keeps track of the
number of free valences assigned to al!l nodes for use in 8 sutsequent
steﬁ.

&2283: As will be clarified in the subsequent discussion, there are
several general types of ring-superatoms which cannot be constructed

from the vertex-graphs available in the CATALOG (described below).

—— e e e, e e e e e ——-——- -

17)  Use of the term degree with reference to the degree list refers to the
number of bonds other than free valences, with double bonds being counted
twice. A free valence may or may not eventually be attached to a hydrogen

atom in the final structure.

15




These are all cases of multiple extended unsaturations either in the

r
form of double bonds or rings. Examples are the following:
: 1Y wi-, tri-, ... n-cyclics With exocyclic double bonds;
2)  some types of spire ring systems;
3} allenes extended by additional double bonds, e.g.,
’ C=CaCaC

The concept of ¢ loop, each loop consisting of a sinéle unsaturation and at least
one bivalent node, must be utilized for these cases. Examples of loops
containing one, two and three bivalent nodes are shown in Chart 1. Note that
the two remaining "ends" of the unsaturation will yield a "looped structure"

when attached to a single node in a graph (shown as X, Chart 11).

- e A -

Chart 11
bivalents = 1 2 3

The method for specification of loops is discussed in Calculation of

Loops, Annendix C.

Portitioning of Secendary Nodes among Loops and Non-loops. The secondary

nodes in the degree list are partitioned between the loops (if any) calculated

in the previous step and the remaining non-loop portion of the eventual graph.

16




Aspects of this partitioning step are presented in Partitioning cf Secondary Nodes

Among Loops and Non-Loops, Appendix C. Results for the example are

indicated in Figure 2.

Reduced chrce List. This procedure yields the reduced degree |list
VAN

which contains none of the secondary nodes originslly present in the
agegree list, Any secondary nodes appearing in the reduced degree |ist
are termed "special" secondary nodes as these nodes il have loopsz

attached in subsequent steps.

Ver tex-Graphs. The reduced degree lists are used to specify a set
of vertex-graphs for the eventual ring-superatoms. All tuo-conrected
structures can be described by their ver tex-graphe, which are, for
most structures, regular trivalent graphs. This concept has been
described in detail by Lederberg e y» whe has 3lso presented a
aenerstion and classification sci’meme for such graphs. Given a set of
aiv vertex-graphs, the set of all ring-superatoms may be specified'5 .
ihe wvertex-graphs are maintained by the program in the CATALGG.
Cataloy eniries for regular trivalent graphs possessing two and four
4 nours are presented in Table [, This list must be supplemented by
additional vertex-graphs to cover several special cases required for
generation of all structures for the example. These are also

? presented in Table Ill. With the reduced degree list of a




TABLE Ill. Vertex-Graphs Necessary for Construction ofc!somers
of C6H8. This is a Partial Listing of the Catalog.
Number of Nodes
) Planar b of Degree
Representation  Nome Three Four Remarks

(D 2A Regular trivalent graph |
(hosahedron) 2 f of two nodes |
)
0 =« « o
Regular trivalent graphs
4BB of four nodes
(tetrahedron) 4 0
. A single ring composed
"Singlering k" 0 0 of k secondary nodes
Tetravalent Two nodes of degree
Dihedron 0 2 four
4
A single quaternary
% “Daisy" 0 1 node
@ $38CB 2 =
4

(a) ™he listing of reference 10 has been expanded to inc}gde vertex-graphs of
ther combinations of nodes of degree three and four °2. The completeness
of tre Catulog has becp verified where possible by independent graph
songtruction methods 1V and by comparison with Palaban's compilationsgb’gc

wnere appropriate.

Nares, except those in quotation marks, taken from Lederberg.lo

18a) N.S. Sridharan, unpublisied results; b) L. Masinter, unpublished
results.




superatompot, the program requests the appropriate CATALOG entries.
In the example {Fig. 2}, the reduced degree list (0,0,2) specifies
vertex-graphs containing two quaternary nodes (tetravalent dihedron).
Trhe redi-.n degree list (0,4,0) specifies regular trivalent graphs of
four nodes, of which there zre two: 4AA and 488 (Table 111). When
onliyy secondary nodes are present in the reduced degree list, the

grapn "Singlering" (Table 111} is utilized.

Interiude. Up to this point the program has effectively decomposed
WAMAAAAAA

the problem into a series of subproblems, working down from the tota!
POt of atoms through a series of partitions and subpartitions to the
set of possible vertex-graphs., In subsequent steps the vertex-graphs
are expanded to the final structures by a series of constructive

graph lapellings (Table ]V).




Table 1V, The Six Graph Labelling Steps Performed by the Labelling
Algorithm

Labelling Step Function

] Las=l Edges of Vertex-Graphs with
Special Secondary Nodes

2 Lobel Edges of Resulting Graphs with
Non=-Loop Secondary Nodes

! Label Loops of Resulting Graphs with
Loop Secondary Nodes

4 Label Nodes of Cyclic Skeletons with Free
Valences

3 Label Nodes of Ciliated Skeletons with Atom Names

6 Label Free Valences of Superatoms with

Radicals (see Appendix D)

m E:\J/% of \wé:(jﬂ‘.f w_lc Special Secondary Nodes.

Special secondary nodes are those that will have loops attached. The
specification of the possible attachments of the nodes to the graph
ia a "labelling" procedure. This is the first of six such graph
lavelling steps performed by tne program. (Table IV)., Al| of these
labeliing steps involve tre same combinatcrial problem, that of
associating a set cf n lavels, not necessarily distinct, with a set

of cojects with arbitrary sgmmetry's . The same labelling algorithm
is utilized for each of the six labelling steps. A description of the

under iying mathematics and proof of completeness and irredundancy

appears separatelyw 0

13
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Some aspects of the first labelling step indicate how equivalent labellings (which

would eventually yield duplicate structures) may be avoided prospectively,
by recognition of the symmetry properties of the graph; in the first labelling,
the vertex-graph. These symmetry properties are expressed in terms of the
permutation group (see Appendix A and refs. 13 and 14) on the edges of the
vertex-graph. This permutation group, which defines the equivalence of the
edges, may be specified in the CATALOG or, alternatively, calculated as
ner.ded by a separate part of the structure generator. As subsequent steps are
executed, a new permutation group (e.g., on the nodes for labelling step four,
Table V) is derived as necessary o Thus, only labellings which

result in unique expansions of the structure are permitted. The reader
examining Fig. 2 may note that for this simple example the symmetries of the
vertex-graphs and subsequent skeletons can be discerned easily by eye. For
example, all edges of the tetravalent dihedron are equivalent, as are all the
edges of the regular trivalent graphs 2A and also 4BB. The $3BCB graph
(Table I, Fig. 2) has four equivalent edges and one other edge, and so forth.
in the general case, however, the symmetries of the vertex-graphs and

subsequent expansions thereof are not always obvious.

With the group on the edges specified, the labelling of the vertex-
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9raphs with spec’al secondary nodns is carried out. The rasults of

this procedure for partitions containing loops are indicated in

Fiqure 2.

Mg with Non-Loop Secondary Nodes. The graphs whick resulted from
the previous labelling are now labelled with the partitions of non-loop
4 secondary nodes (see Partitioning of Non-Loop Secondary MNodes Among
Edges, Append’x C). Each of the five partitions for the tetravalent dihedron
in Fig. 2 results in c single labelling, as all four
edges of the graph ure equivalent. When edges are distinguishable there may
be several ways to label a graph with a single partition. There are, for
example, for the $3BCB graph, two ways to label with the partition 3,0, 0,0, 0,
four ways with the partition 2,1,0,0,0 and three ways with the partition 1,1,1,0,0

(Fig. 2).

Labelling with Loop Secondary Nodes. There remain unassigned to the graphs
at this point only secondary nodes which were assigned to loops. These

nodes are first partiiioncd among the loops. (see Partitioning of Loop
Secondary Nodes Among Lcops, Appendix C). For example,

following the path from the degree list (4.0,2) through labelling

with non-loop secondary nodes (Fig. 2), there are two ways of

labelling the two equivalent loops with four secondary nodes. There
i is one way to label the two loops of the adjacent graph with three
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seCondary nodes and one way of labelling the two loops of each of the

4
tiio remaining graphs in this eection of Figure 2 with two secondary
nodes. in this example (C U ) the loops in every case are equivalent
63
¢ or there is only one loop to be labelled. In the general case loops

may not be equivalent, resulting in a greater number of ways to label

icops With a given partition of secondary nodes.

Cyciic Skeletons. The previous labelling steps specified the number
WAaAAAA, VAAA A

of secondary nodes on each edije of and loup attached to the vertex-
graphs. All atoms in the original superatompot are thus accounted
for. A representation of the result is the cyclic skeleton, where
nodes and iheir connections to one another are specified. (These

skeletons begin to resemble conventional chemical structures.)

Labelling uith Free Valences. The nodes in a cyclic ekeleton are
M—MMW

then labelled with free valences, yielding ciliated skeletons. This
labelling is trivial in the example, as all atoms are of the same
valence (four) (Figure 2). Free valence labelling is performed with
knouledge .of how many atoms of each valence were present in the
original superatompot, but independent of the identities of the

atoms, The combinatorial complexity of this lavbelling problem fo!lows

from the possible occurence of atoms with differing valences. In the

general case there may be several ways to perform this labelling on a

22




single cyclic skeleton, uhereas in the C U example there is only one
63

Way.

llx;w Hith I\\/Q\r_n ﬁé‘,"&& The nodes of a ciliated skeleton are
then labelled with atom names to yield the ring-superatom(s). Again
this labelling is trivial in the example, as onl{y one type of atom is
present (carvon), yielding in each case only a single superatom (Fig.
2). 1f there is more than one type of atom witi the same valence
(e.g., silicon and carbon), the labelling problem is more complex.
Each node of appropriate valence ma_ bs labelled with either type of

atonm., Duplicate structures are avoided by calculations involving the

group pertaining to the set of nodes of equal valence.

ITABLE. Achl ic Generator.

The superatom partition expanded in the example had no atoms assigned to
acyclic chains (remaining pot). The set of ring-superatoms on completion of
Part B, cbove, thus yields the set of 36 structures on placement of a
hydrogen atom on each free valence (Fig. 2). If the superatom partition
(partitions 2-11, Table.ll) contained more than one superatompot or

any atoms in the remaining pot, the acyclic generator must be used to
connect the segments of the structure in all ways. This procedure is

described in detail in Appendix D.




OISCUSSION

Completion of [ Hg: The example (Fig. 2) has considered only

expansion of a single superatom partition. It might be instructive
for the reader to attempt to generate all, or at least the remaining,

structures for CH . The number of solutions is presented in a
6 8

subsequent section. If the algorithm as outiined in Figure 2 is
followed, it is suggested that the initial superatom partitions in
Table Il be examined carefully. These partitions yield some
indication of the types of structures which Will result from each

partition. For example, partition &4, U w single superatompot,
33

plus three carbons in the remaining pot, should yield all structures
containing a three-membered ring possessing tuo double bonds or a
triple bond. As there are only two free valences, the remzining
atoms can be in a single chain (as a propy!l or izgjpropgl radical) or

as a methyl and an ethyl group, but not as three methyl groups.

Completeness and Irredundancy. Although a mathematical proof of the

completeness and irredundancy of the method existsls .y there is no
guarantee that the implementation of the algorithm in a computer
program maintains these desired characteristics. Confidence in the
completeness and irredurdancy of a program of this complexity can be

engendered in the following ways:




1) Verification of the program's performance by another, completely
independent approach. An independent method has been developed which i
enumerates, but does not construct, all isomers of compositions containing
C,H,N, and O18b . It is interesting that the program for simple counting
of the solutions is significantly slower than construction of all of the
solutions, despite some effort to improve the efficiency of the former
program. Thus, due to limitations of compvter time, we have been limited

to compvositions containing only 5 or fewer non-hydrogen atoms. For these

cases, however, the numbers of isomers obtained by both programs agree.

Balaban has presented lists of isomers of C,H,, C,H,, C_H, and C, H 09d.
yty Cellgr Cs'l LMy,

94

These lists were derived from his tables of graphs of degrees 2-4 and
orders (numbers of nodes) 1-5. Although we agree with his lists of
hydrocarbon isomers, the list of isomers of CMHMO is incomplete. The

structure generator provides 62 structures (as opposed to 59). The three

missing structures are: {—\E @ @
o o 0/
94

These structures should have been produced following Balaban's method” .
The fact that they were not points out the difficulties inherent in any

procedure for isomer generation in which manual steps are involved (see below).

2) Testing by manual generation of structures. Several chemists, all
without knowledge of the algorithm described above, have been given several
test cases, including C6U3’ from which structures were generated by hand.
Familiarity with chemistry is no guarantee of success, as evidenced by the
performance of three chemists for the superficially simple case of
Table V).

C6U3 (C6H8,
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Table Vv, Performance of Three* Chemists in Manual Generation
of Isomers of C6H8 (C6U3)' There are 159 |somers.

' Number Generated Type of Error
Chemist 1 161 4 duplicates; 4 omissions
2 with 7 carbon atoms.
? Chemist 2 168 16 duplicates; 7 omissions
Chemist 3 160 2 duplicates; 1 omission

* One PhD and two graduate students.

This example indicates that for more than very trivial cases,

it is extremely difficult to avoid duplicates (tricyclics, for

example, are difficult to visualize when testing for duplicates) and
omissions. Omissions appear to result from both carelessness and
neglect of ring systems that are implausible or unfamiliar. The
program seems better at testing the chemist than vice versa. In
every instance of manual structure generation, no one has been able
to construct a legal structure that the program failed to construct.
No one has been able to detect an instance of duplication by the
program. This performance builds some confidence, but manual
verification of more complicated cases is extremely tedious and
difficult. Isomers for many empirical formulae have been generated,

and some results are tabulated in Table VI. The choice of examples
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has been motivated by a desire to test all parts of the program where

errors may exist while keeping the number of isomers small enough to

allow verification. In this manner all obvious sources of error have been checked,
? for example, construction of loops on loops, multiple types of atoms of the same

valence (e.g., Cl, Br, I) and examples containing atoms of several

different valences including penta- and hexavalent atoms.

3] Varying the order of generation. The structure of the
program paermits additional tests by doing eome operations in a
different order. For example, one variation allowed is to leave
hydrogens associated with the atoms in each partition rather than to
strip them away initially and place them on the remaining free
valences in the last step. Each such test has resulted in the same

set of isomers.

4) Using Polya enumer'ation6 at the various labelling steps
of the procedure to verify the correctness of sub-parts of the
program, Using various combinatorial formulae, one can insure that
the results of at least parts of the program are consistent with

independent calculations. This approach was used extensively in the

cevelopment of the labelling algorithm,




In summary, the verification procedures utilized have all indicated
absence of errors in the computer implementation of the algorithm.
Also, there is no clear reason why generation of larger sets of
isomers should not aleo proceed correctly. The final verdict

however, must await development of new mathematical tools for

verification by enumeration (see above) or an ai‘ernative algorithm.




Empirical
Formula

CH
66

CH
68

CH
6 18

Example Number of lsomers
Compound

benzene 217
1,3-cyclionexadiene 5§
cyciohexene 77
cgc{ohexane 25
hexane 5
phenol 2237
cyclohexanone 747
2-hexanone 211
pyrazole 156
2-pyrazoline 136
tetrahydropyrazole 62
propylenediamine 14
{pentavalent P) 119

Manually Verified?

yes

yes

yes

yes

yes

no

no

yes

no

yes

no

yes

- ...._‘.__..-..__-__-._—-.-_..-..-.--.—--—......-....___-..-.-.--------—-—--—---------.

28

!
|




Constraints. The structure generator is designed to produce a list of all
possible graph isomers (Appendix B). This list contains many structures whose
existence seems unlikely based on present chemical knowledge. In addition,
the program may be called on to generate possible structures for an unknown
in the presence of a body of data on the unknown which specify various
features, e.g., functional groups) of the molecule. In such instances
mechanisms are required for constraining the generator to produce only
structures conforming to specified rules. The implementation of the

acyclic generator possessed such a mechanism in the form of GOODLIST

(desired features) and BADLIST (unwanted feafures)3 which could be

utilized during the course of structure generation.

The complete structure generator is less tractable. As in prospective
avoidance of duplicate structures, it is important that unwanted structures, or
portions thereof, be filtered out as early in the generation process as
possible. It is relatively easy to specify certain general types of constraints
in chemical terms, for example, the number of each of various types of rings
or ring systems in the final structure, ring fusions, functional groups, sub-
structures and so forth. It is not always so easy to devise an efficient scheme
for utilizing a constraint in the algorithm, however. As seen in the

above example (Fig. 2) the expanded superatom partition results in what would

be viewed by the chemist as several very difierent ring systems.



The design of the program facilitates some types of constraints. For
example, the progrc n may be entered at the level of combining superatoms to

generate structures from a set of known sub-structures. If additional

atoms are present in an unknown configuration, they can be treated as a
separate generation problem, the results of which are finally combined in all
ways with the known superatoms. This approach will not form additional two-
connected structures, however. Constraints which disallow an entire
partition may be easily included. For example, it is possible to generate
only pure ring isomers by "tuming off" the appropriate initial superatom

partitions.

Much additional work remains, however, before a reasonably complete set of
constraints can be included. The implementation of each type of constraint
must be examired and tested in detail to ensure that the generator remains

thorough and irredundant.

CONCLUSIONS

The algorithm summarized in this paper permits the substantial realization of

the graphical structures that constitute the domain of organic chemistry. The
version of the algorithm presented here ignores the tetrahedral symmetry
of the valences of the carbon atom. However, the topological framework

readily admits of systematic tests for asymmetric centers which can then be

. B L . i B T e

This

assigned to the dichotomous categories of the altemating group A4.
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framework also provides a simple, systematic weighting of radicals for
assignment of precedence that proves to be, if anything, even more
straightforward, comprehensive and free from ambiguity than the Cahn-
Ingold-Prelog conventionslg.

The mathetmatical framework of ocur analysis is a mapping of chem-
ical bonds onto the edges of topological graphs. This simplificatien
can lead to disparities, for example in the description of coordination
complexes, the bonds of which are non-equivalent. The symmetries of
such complexes are similar to those of certain superatoms, suggesting an
obvious and easy way to extend the system. Likewise, the system does
not now accommodate isomerism based on steric hindrance, or the associa-
tion of molecules by secondary forces, or by non-covalent constrants.
For example, from a topological standpoint, threaded molecules, or
catenanes, are disjoint graphs. Nor do we attempt to display the geo-
metric conformations of molecules: indeed, some topologically plausible
Structures may be chemically unrealizable.

Conversely, implausible constructs, such as carbon atoms possessing
"inverted" tetrahedral geometry20 may become reality by empirical dis-

covery. The constraints on chemically plausible structures depend on

(19) R. S. Cahn, C. K. Ingold, and V. Prelog, Angew. Chem. Internat. Ed. ;

5, 385 (1966).
o

(20) (a) K. B. Wiberg and G. J. Burgmaier, J. Amer. Chem. Soc: ; 94,
7396 (1972);
(b) K. B. Wiberg, G. J. Burgmaier, K. Shen, S. J. LaPlaca, W. C.

Hamilton, and M. D. Newton, J. Amer. Chem. Soc. s 84, 7402 (1972).

the domain specified by the chemist. A DENDRAL3 system for molecular
structure elucidation25 (based on the structure generator described in

this work) of molecules in frozen hydrogen matrices would have differ-

ent constrants from a version useful to biochemists.
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Chemists hitherto have been able to explore the de facto boundaries of their
domain without explicit maps. The exhaustive and efficient study of all
possible structures can now be facilitated with the assistance of computer
programs that can help assure that no possible construction has been

21
overlooked
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Appendix A, Equivalence Classes_and Finite Pernutation Groups.

o metbers of @ set of possible isomers may be defined to be
cauivalent ¢ 3 gpecified transformation of one memher causes it to
ve supcr cpusahle upon another member of the set. For example, there
orec fifteen possible ways of attaching two chlorine and four hydrogen
atoms to a benzene ring (Chart [[1).

LR T L E P L LT R DT T T ¥ Y 2 T RN L L

Chort III
Cl

'\ i A : cl i

o - vl #H -
A N4

% SN S T

-

Cl
5 = |
= < i Cl cl @ c
1 | e
> NS ci cl c
|

ci

__.f_’l\ 1 Cl
O Q
- ci el

L

if rotations hy multiples of 60 degrees are specified as allowed
transformations, the fifteen structures fall logically into three
classes, termed "equivalence classes" (Chart 11l). Within each
equivalence class structures may be made superimposable by the
rotational transformation. If one element (in this case a molecular
structure) is chosen from each equivalence class, the complete set of
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possivle structures is determined, without duplication. It is the

) task of the Iabellipg algorithm to produce one and only one graph
lavel ling corresponding to one member of esch equivalence class.

The set of transformations which define an equivalence class is termed a
"finite permutation group." This permutation group may be calculated based
on the symmetry properties of a graph (or chemical structure in the example
of Chart 111). This calculation provides the mechanism for prospective
avoidance of duplicogon. These procedures are described more fully in the
accompanying paper .
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Appendix B. Isomerism and Symmetry.

Appendix A introduced the concept of equivalence classes and finite permutation
groups. The selection of transformation (Appendix A) directs the calculation of
the permutation group and thus defines the equivalence classes. Different types

of transformation may be allowed depending on the symmetry properties of the class
of isomers considered. This Appendix discusses severui cf the possible types of
isomerism, most of which are familiar to chemists. The reader seeking a more
thorough discussion of some types of isomerism discussed below is referred to an
exposition of molecular symmetry in the context of cheiistry and mathematics.

Isomers are most often defined as chemical structures possessing the same
emopirical formula. Different concepts of symmetry give rise to different
classes of isomers, some of which are described below.

Permutational Isomers. Permutationci isomers are isomers which have in
common the same skeleton and set of ligands,,,They differ in the distribution of
ligands about the skeleton. Gillespie et al.”~ and Klemperer™ " have used the
concept of permutational isomers to probe into unimolecular rearrangement or
isomerization reactions.

Stereoisomers. Ugi et <.':I.22 have defined the "chemical constitution" of an

ator~ to be its bonds and bonded neighbors. Those permutational isomers which
differ only by permutations of ligands at constitutionally equivalent positions form
the class of stereoisomers.

Isomers Under Rigid Molecular Symmetry. If one perceives
molecular structures as having rigid skeletons, the physical
rotational (three dimensional) symmetries and transformations may be
readily defined. Each transformation causes each atom (and bond) to

(22) I. Ugi, D. Marquarding, H. Klusacek, G. Gokel, and P. Gillespie,
Angen. Lhem. internat. Edit., 2, 783 (1978).

(23) P. Gillespie, P. Hoffman, H. Klusacek, 0. Marquarding, S.
Pfoh!, F. Ramirez, E. A. Tsolis, and I. Ugi, Angew. Chea.
internat. Edit., l‘g. 687 (1971).

(24) (a) W. G. Klemperer, J. Amer. Chem. Soc., §4~. 6848 (1972);
(o) W. G. Klemperer, itid, p. 8368;
(c) W. G. Klemperer, ibid, 95, 380 (1973);
(d) W. G. Klemperer, E p. 2105.
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occupy the position of another or same atom (and bond) so that the
rotated structure can physically occupy its former position and at
the same time be indistinguishable from it in any way. This is the
most familiar form of symmetry. Under this type of symmetry
contformers are distinguishable and belong in distinct equivalence
classes. Every transformation is orthogonal and preserves bond
angles and bond lengths as well as maintaining true chirality.

If one allous other orthogonal transformations that alter chiral
properties of structures, equivalence classes result that treat both
the left-handed and right-handed forms of chiral molecules to be the
“same". Thus a "mirror image” transformation when suitably defined
permits the left-handed form to exactly superimpose the right-handed
form and vice versa.

Isomers Under Total Molecular Symmetry. If in addition to the above

mentioned rigid molecular transformations one recognizes the
flexional movements of a nonrigid skeleton, a dynamic symmetry group
mey be defined. Under this definition, different conformers now are
grouped together. Thus the "chair" and "boat" conformations of
cyclohexane belong to the same equivalence class under dynamic
symmetry. The permutation group of skeletal flexibility is
computable separately and indepencentiy of rigid molecular symmetry,
One can then view total molecular symmetry as the product of the two
finite permutation groups.

Isomers Under Connectivity Symmetry. The concept of connectivity

symmetry was introduced previously (METHOD section). Every
permutation of atome and bonds onto themselves is a symmetry
transformation for connectivity symmetry if,

a) each atom is mapped into another of like species, e.g., N to
N, CtoC, 0 to 0, and

b) for every pair of atoms, the connectivity (none, single,
double , triple, ...) is preserved in the mapping, i.e. the the
connectivity of the tuo atoms is identical to the connectivity
of the atoms they are mapped into.

Une can readily recognize that  transformations as defined
automatically preserve the valence and bond distribution of every
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atom, It is very probable that readers accustomed to three
dimensional rotational and reflecticnal symmetries will tend to
equdate them wWith the symmetries of connectivity, It is emphasized
again that connectivity symmetry does not corsider bond lengths or
bond angles, and it includes certain transformations that are
conceivable but have no physical interpretation save that of
permuting the atoms and bonds.




Appendix C

Superatom Partitions. The first step is to replace the hydrogen count with the

degree of unsaturation. The number of unsaturations (rings plus double bonds) is

determined from the empirical formula in the normal way, as given in equation 1.

n
1/2 (2+% (i=2)a.)
i=1 '
= unsaturation
valence
= maximum valence in composition
a, = number of atoms with valence i

3 i <
i

If the unsaturation count is zero, the formula is passed immediately to the
acyclic generator. Specifying the unsaturations as U's, the example C6H8

becomes CéU3 (hydrogen atoms are omitted by convention).

There are several rules which are used during the partitioning scheme, as
follows:

. The resulting formula is stripped of other univalent atoms (e.g.,
chlorine) as such atoms cannot be part of two-connected ring-
superatoms. These univalent atoms are relegated to the pot of
remaining atoms.

. The remaining pot in a given partition (those atoms not allocated to
superatompots) can contain no unsaturations. Thus all rings and/or
multiple bonds will be generated from the superatompots.

. It follows that every superatompot in the partition must
contain at least two atoms of valence two or higher plus ot least
one unsaturation. [f there are no unsaturations ther no rings could
be built. In addition, an unsaturation cannot be placed on a
single atom. This rule defines the minimum number of atoms and
unsaturations in a superatompot.
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. V. The maximum number of unsaturations in a superatompot is given by
Equation 2. Superatoms mus: possess at least one free valence ' |, so
that superatompots with no free valences, e.g., O U, or C,U,, are not
allowed, unless the superatompot contains all atoms in the empirical

formula (since no univalents, and thus no hydrogens, are allowed in a
. superatompot, this is indeed a rare occurance.)
n
U = =
- W2 (£ (i-2)a)) (2)
i=3
Umax = maximum unsaturation of a superatompot
' n = maximum valence in composition
i = valence
a, = number of atoms with valence i
. ¥ The maximum number of superatompots for a given formula is defined by
equation 3.
n
=1/2% a.
“max = 1/2E ¢, 3
1=2
n = maximum valence in composition
s maximum number of superatompots in a superatom partition
a. = number of atoms with valence i

note: the summation is over all atoms of valence ) 2; univalents are
not considered.

Rules i-V define the allowed partitions of a group of atoms into superatompots.
These rules do not, however, prevent generation of equivalent partitions, which
would eventually result in duplicate structures. By defining a canonical
ordering scheme to govern partitioning, we prevent equivalent partitions. One }
such canonical ordering is as follows: '

Canonical Ordering for Partitioning.

a. Partition in order of increasing number of supcratompots.
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b. For each entry in each part of (a8), partition in order of
decreasing size of superatompot by allocation of atoms one at a
tine to the remaining pot.

G- Each individual partition containing two or more
superatompots must be in order of equal or decreasing size of
the superatompot. In other words, the number of atoms and
unsaturations in superatompot D+l must be equal to or less than
the number in superatompart n. The program notes the equality
of superatonpots in 3 partition to avoid repetition.

The application of rules [-V is best illustrated through reference to
the example of C U . The maximum number of superatompots for this
€3

exanple is three (Equation 3). There is one Hay to partition C U

63
into one superatompot with no remaining pot, partition 1, Table 1.
Subsequent assignment of carbon atoms one at a time to the remaining
pot resuits in partitions 2-4, Table Il. The next partition
following the sequence 1-4 would be C U with C assigned to the

4

23
remaining pot. This partition is forbidden as CU has no free
23
valences. The three ways to partition CU into two superatompots
63

are indicated along with the corresponding partitions following
assignment of atoms to the remaining pot, as partitions 5-18, Table
I1. There is oniy one unigue way of partitioning C U into tnree

superatompots, partition 11, Table |1,

Calculation of Free Valence. The expression for the free vaience of

a superatompot is given by equation &,

n
FV = (2 42 (i-2)a)-2U (4)
=3 i

U = unsaturation of superatompot

I = valence

n = maximum valence in composition

a8 = number of atoms with valence i
i

FV = free valence
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Partitioning of Free Yalence. Because ring-superatoms are tuo-

connected structures two valences of each atom of a superatompot muct
be used to connect the atom to the ring-superatom. Thus no free
valences can be assigned to bivalent nodes in the valence list, a
maximum of one to each trivalent, a maximum of two to each
tetravalent, and so forth. The example (Fig. 2) is further
simplified in that there are only tetravalent nodes in the valence
list, Inclusion of trivalent nodes (e.g., nitrogen atoms) merely
extends the number of possible partitions. The free valences are
partitioned among the tetravalent nodes in all Ways, as illustrated
in Figure 2. It is important to note that removal of atom names
makes all n-valent (n=2 or 3 or ...) nodes in the valence !jst
equivalent at this stage. Thus the partitions (of eight free
valences among six tetravalent nodes) 222200, 222020, 2220QR, oE Bl
002222 are all equivalent. Only one of these partitions is
considered to avoid eventual duplication of structures.

Coalculation of Loops. There are several rules which must be

follo~ed in consideration of loop assignment to ring-supsratoms. The
minimum (MINLOOPS) and maximum (MAXLOOPS) numbers of loops for a
given valence list are designated by equations S and 6.

n
MINLOOPS =max {0, a, +1/2(2n - .}32\10‘])}
J:

n
MAXLOOPS =min {a,, 1/2Z (j-2) a.}
2 j=4 |

MINLOOPS = minimum number of loops
MAXLOOPS = maximum number of loops

a, = number of nodes with degree j
.j‘l = degree
n = highest degree in list (an #0)

The form of the equations results from the following considerations:

1)  Only secondary nodes may be assigned to loops. Nodes of
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higher degree will aluays be in the non-loop portion of the
ring-superatom,

2) A loop. by definition, must be attached by two bonds to a
single node in the resulting ring-superatom. The loop cannot
be attached through the free valences. Thus the degree list
must possess a sufficient number of quaternary or higher degree
nodes to support the loop(s).

3) Each loop must have at least one secondary node, which is
the reason MAXLOOPS is restricted to be at most the number of
secandary nodes in the degree Iist (Equation 6).

4) There must be availanie one unsaturation for each loop
(this is implicit in the calculation of MINLOOPS and MAXLOOPS)
as each loop effectively forms a new ring.

Partitioning ¢! Secondary_Nodes between Loops and Non-Loops. For each of
the possible numbers of loops (0, 1, ...) the secondary nodes are removed from
the degree list and partitioned among the loops, remembering that the loops are
at present indistinguishable and each loop must receive at least one secondary
node. In the example (Fig. 2), starting with the degree list (4, 0, 2), there are
three ways of partitioning the four secondary nodes among two loops and the
remaining non-loop portion. Removal of the four secondary nodes from the
degree list and assignment of two, three or four of them to two loops results in
the list _pecified in Figure 2 as the "reduced degree list". Specification of two
loops transforms the two quaternary nodes in the degree list into two secondary
nodes. This results from the fact that two valences of a quatemnary or higher
degree node must be used to support each loop. These are "special" secondary
(or higher, for atoms with valence ) 4) nodes, however, as these particular nodes
will have loops attached as the structure is built up. Thus, in the example,

any secondary nodes which are found in the reduced degree list will have a loop
attached in a subsequent step. The degree list (4, 0, 2) thus becomes the
reduced degree list (2, 0, 0) in the partition specifying two loops (Fig. 2).
Similarly, the partition of one loop for the degree list (3, 2, 1) results in a
reduced degree list of (1, 2, 0) with the three original secondary nodes
partitioned among loop and non=loop portions (Figure 2).

If, after the first, second, ... nth loop partition, there remain one
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or more quaternary or higher degree nodes in the reduced degree |ist,
the list must be tested again for the possibility of additional
loops. Each loop partition wWwill result in an additional eet of
structures. The second pass wWill yield those structures possessing
loops on loops, and so forth. One suck superatom which would be
generated in this manner from a composition of (at least) C U is 1s.

665

CuC=CeCuC=C
15

Partitioning of Non-Loop Secondary Nodes among Edges. The secondary nodes
which were not assigned to loops (" non-loop secondary nodes") are partitioned
among the edges of the graphs after labelling with special secondary nodes, or
loops. Loops are not counted as edges. There are, for example, five ways to

partition four non-loop secondary nodes among the edges of the vertex-graph
possessing two quaternary nodes (Fig. 2).

Partitioning of Loop Secondary Nodes among Loops. This partitioning step is

carried out assuming indistinguishability of the loops. Each loop must receive

at least one secondary node, which limits the number of possible partitions.
Results are presented in Figure 2.

-




Appendix D - Acyclic generator

A method of construction of structures similar to the method for acyclic

isomers is utilized to join multiple ring-superatoms and remty’nim q}gms.

The DENDRAL algorithm for construction of acyclic isomers™” '’

relied on the existence of a unique central atom (or bond) to every molecule.
The present acyclic generator uses the same idea. Th.e present algorithm, though
simpler in not having to treat interconnection of atoms or ring-superatoms through
multiple bonds, is more complex because of the necessity to deal with the
symmetries of the ring-superatoms. ®

Dl. Method for the case with even number of total atoms.

The superatom partition CU /C U /-/C (partition 7, Table Il and
22 21 2
Figure 2) will be used here to illustrate this procedure. The
superatompots C U and C U have exactly one possible ring-superatom
2 24
for each (see Table V]l).

Table VII.
Superatompot Superatom

-L=C-

Thus acyclic structures are to be built with -C=C- , >C=C< and two

L S.

There are an even number of atoms and ring-superatoms. The
structures to be generated fall into two categories: (a) those with
bond centroid; (b) those with an atom centroid.

B. G. Buchanan, A. M. Duffield, and A. V. Robertson, in "Mass
spectrometry, Technigues and Applications,” G. W. A. Milne, ed., John
Wiley and Sons, Inc., 1971, p. 121.
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Categary A. BOND CTNTROID (see Fig. 3)

Step 1. Partition into Two Parts.

The atoms and ring-superatoms in the |list of superatoms are
partitioned into tWo parts, with each part having exactly half the
total number of items. Each atowm or ring-superatom is a single item.
Each part has to satisfy equation 7, called the Restriction on
Univalents.

Restriction on Univalents:

n
ay _(_[E (i-2)oi] -1 ()
=2

i = valence.

a. = number of atoms or superatoms of valence i.
I : : sk

n = maximum valence in composition.

There are two ways of partition 1 the four items into two parts (Fig. 3). The
restriction on univalents is sati:"ied in each case. The restriction will disallow
certain partitions that have "tc., many" 26 ynivalents other than hydrogens and
therefore is essential only in partitioning compositions that contain any number
of non-hydrogen univalents.

Step 2. Generate Radicals from Each Part.

Using a procedure described in Section D3, radicals are generated from each part
in each partition. The result of application of this procedure to the example is
shown in Table Vlil.

(26) The form of equation 7 results from the fact that the number o univalents (ai)
cannot exceed the number of free valences necessary to connect the
superatoms, leaving one valence free for the radical valence.
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Table VIII. Radicals Generated from Given Parts
Part | Radicals
(lg) -C=C-, YC=¢( -+ -CT-_'C-CH'—"—CH2
-CH=CH-C=CH
-ﬁ-CECH
CH2
............................. § SR ————
(1b) C2 4 -CH2-CH3
............................. . -
(29 -C=C-, C - -CF:-'C-CH3
-CH2-CECH
............................. o i s e S S
' @b YC=C( , C -+ -CH=CH-CH,
-C-CH3
ll
, CH2
-CH2-CH'—--CH2
Step 3. Form Molecules From Radicals.

A The radicals are combined in unique pairs, wuwithin each initia!
partition. Each pair gives rise to a unique molecule, for each of
which the centroid is a bond. There are nine such molecules for the
example chosen (Fig. 3}. :

¥
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) Category B. ATOM CENTROID (see Fig. 4).

Step 1. Selection of Centroid.
One must consider every unique atom or ring=superatom that has a free

. . , 10,25
valence of three or higher as an atom centroid = .. In the example,
of three candidates available: =C=C-~, ) C=C( and C, the first is not
chosen for it has a free valence of only two.

-

Step 2. Partition the Rest of the Atoms.
The atom or ring-superatom chosen for the centroid is removed from the set
4 and the rest are partitioned into a number of parts less than or equal to the
valence of the central atom. Each part must have less than half the
total number of items being partitioned (again a ring=superatom is a
single item). Each part must satisfy the restriction on univalents (equation 7).

r Thus, for the case where a carbon is the centroid, four partitions are
attempted. The condition that each part has less than or equal to one-half
the number of superatoms remaining after selection of the central atom must
be satisfied, or at most one for this example. There is exactly one

[ partition for three parts, i.e., one in each. The partitions are shown in

] . Figure 4.

Step 3. Generate Radicals.

Once again, using the procedure described in Section D3, radicals are
constructed for each part in each partition. For example, the partition
-C#mC- gives rise to exactly one possible radical ~-C=CH (Fig. 4).

-»

Step 4. Combine Radicals.

Although in the example shown every part generates only one radical, in the
general case there will be many radicals for each part. If so, the radicals
must be combined fo give all unique combinations of radicals within each part.




Step 5. Form Molecules from Central Atom and Radicals.

If the centroid is not a ring-superatom but is a simple atom, then each
combination of radicals derived in Step 4 defines a single molecule that is
unique. Thus for example when C is chosen as the centroid, step 4 gives one
combination of radicals which determines a single molecule when connected
to the central C (see Figure 4).

If the centroid is a ring=superatom and the valences of the ring-superatom
are not identical then different ways of distributing the radicals around the
center may yield different molecules. Labelling of the free valences of the
central ring-superatom with radicals treated as labels (supplemented with

4 adequate number of hydrogens to moke up the total free valence of the ring-
superatom) generates a complete and irredundant list of molecules. Thus

Y C==C{ is labelled with the label set:

one of =-C=CH, two of —CH3, and one of =H.

L4
There are two unique labellings as shown in Figure 4.

D2. Method for odd number of total atoms.

" With an odd number of total atoms, nr structures can be generated with a bond
centroid. Only atom centroids are possible 1925 | However, it is
possible for structures to be built with a bivalent atom at the centroid. Thus
the procedure outlined in Category B above is followed, in this case also
allowing a bivalent atom as the centroid.

! D3. Generation of Radicals.

The goal of this procedure is to generate all radicals from a list of
atoms and ring-superatoms. A radical is defined to be an atom or
superatom with a single free valence. When a composition of atoms and

' ring-superatoms is presented, from which radicals are to be constructed, two
special cases are recognized.

Special Case 1. Only One Atom in List of Atoms.
When only one atom which is not a ring=superatom is in the list, only one

' radical is possible. For example, with one C, the radical =CHg is the
only possibility.

¥
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Special Case 2. Only One RiAg-superatom in List of Ring-superatoms.

' In this case, depending upon the symmetry of the ring=superatom, several
radicals may be possible. This is determined by labelling the free valences
of the ring-superatom with one label of a special type, a * radical-valence".

Example: A list of ring-superatoms consists of one ring=stperatom, 16.
A
> |
N\
Ta

16

-t

Thwo radicals result from labelling with one radical valence.

CH ' e

CH CH

General Case

' Radicals have uniquely defined centroids as well | The centroid is

always an atom of valence two or higher. The steps for construction of
radicals are as follows.

Step i. Selection of Atom Centroid.

Any bivalent or higher valent atom or ring=superatom is a valid candidate to
be the centroid of a radical. Thus, for example, for the composition
-C=C-, YC=C{ (see part la in Figure 3) both are valid centroids (Figure 5).




Step 2. Partition the Rest of the Atoms.

The atom chosen for the centroid is removed from the list of superatoms. One
of the valences of the centroid is to remain free (the radical valence).
Therefore, the rest of the atoms in the list are partitioned into less than or
equal to (valence of centroid - 1) parts. Of course, each part should

satisfy the restriction on univalents (equation 7) but for constructing

radicals there is no restriction on the size of the parts.

Step 3. Form Radicals from Each Part.

The procedure to construct radicals is freshly invoked on each part thus
generating radicals. Each part in Figure 5 gives rise to only one radical, each
arising from special case 2.

Step 4. Combine Radicals in Each Part.

For the example in Figure 5, each part yields only one radical. In a more
general situation, where the rest of the list of superatoms after selection of a
centroid is partitioned into several parts, and where each part yields

several radicals, the radicals are combined to determine all unique combinations
of radicals.

Step 5. Label Central Atom with Radicals.
If the center is an atom (not a ring-superatom) then each unique combination
defines a single unique molecule.

If the center is a ring-superatom, the radicals are determined by labelling the
center with a set of labels which includes: i) the radicals; ii) a leading
radical-valence; iii) an adequate number of hydrogens to make up the
remaining free valences of the ring-superatom. One selection of center gives
one radical and the other gives two more, to complete a list of three

radicals for the example chosen (Fig. 5).

Summary
For the example chosen to illustrate the operation of the acyclic generator,

twelve isomers are generated, nine shown in Figure 3 and three shown in
Figure 4.
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FIGURE CAPTIONS

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Outline of the strategy for structure generation.

Major steps in the generation of isomers as illustrated for
C,H,.. This example outlines the method for one
superatom partition, that which allocates all atoms to

a single superatompot with no atoms in the remaining pot.

Operation of the acyclic generator for the case of a bond
as a centivid for the structures.

Operation of the acyclic generator for the case of an
atom or superatom as a centroid for the structures.

Outline of the method for generation of radicals which
are eventually combined by the acyclic generator to yield
final structures.
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Figure 3

Category A. BOND CENTROID

List of Superatoms [-c=Cc-, )C =C< o Ll 3

Partition into /\‘

2 parts ~czc-, Yc=c{/ Cz -c=C-,C /)c=c( o)
Part Number la b 2a 2b

Generate Radicals

for each part 3 radlcals | radical 2 radicals 3radicals

[ SeeTable Vil ]
Combine Radicals

in pairs to form (3x1=) 2 molecules (2x3=) 6 molecules

Molecules
CH3- CHz' CEC-CH=CH2 CH3-CH=CH-C-3C-CH3
CHy - CH, - CH=CH-C=CH CH3-CH = CH- CHC=CH
CH3 - CH2 -C -C=CH CH3-C - CsaC—CH3

CH, dn,

CHy C -CH,-C=CH
I
Gy
CH,= CH-CH;sC= C —CH,
CHg CH- CH,-CH,-C=CH




Figure 4
[ ) Cotegory B ATOM CENTROID
I
List of Superatoms [ -C=Cc-, >C=Cc<, C, C ]
' -ﬁ'/\
Select Atom Centroid >C=C< (&
F
Portition Rest into sports=1,2 .| 4 #parts=| 1.2 4\ 3 4
[ ¢ upto (free valence) parts VOID VvOID VOID VvoID
Port -C=C-/C/C X=C(/-C=C-/C
i l 2 3 ] l 2 3
Generote Radicals from ~C=CH/ -CH, /- CH, — CH=CH,/-C=CH/CHy
' eoch port
Combine Radicals in only | way only | way
{ each part (-CECH.-lCHs,-CHs) (-CH=CH, ,-C=CH,-CH;)
Laobel Atom Centroid CHEC—CH= C —CHj, CH2=CH-(%H—CECH
with  rodicals éH;; CHs
t CH=C-C = CH-CH,
|
CHs
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Figure S

GENERATION OF RADICALS

List of Superatoms
(from Part Number lag,
Figure 3)

Select Atom Centroid

Partition Rest into

unto (valence -1 ) parts

Part

Generate Radicals

Combine Radicals in

each part

Label Atom Centroid
with radicals + one
leading radical valence

+ hydrogens

[—CEC—, >c=¢C <]
- C= C’— . C=C<
#par
#ports ?
: VOID
Y
only | partition only | partition
into | part into | part
>C=C < -C=(C-
— CH = CH, -C=CH
only | onlyl

Y {

~C=C-CH=CH, —CH=CH-C =CH
_(l:l— C=CH

58



